Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; : e14145, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647279

RESUMO

AIMS: Active cigarette smoking is a major risk factor for chronic obstructive pulmonary disease that remains elevated after cessation. Skeletal muscle dysfunction has been well documented after smoking, but little is known about cardiac adaptations to cigarette smoking. The underlying cellular and molecular cardiac adaptations, independent of confounding lifestyle factors, and time course of reversibility by smoking cessation remain unclear. We hypothesized that smoking negatively affects cardiac metabolism and induces local inflammation in mice, which do not readily reverse upon 2-week smoking cessation. METHODS: Mice were exposed to air or cigarette smoke for 14 weeks with or without 1- or 2-week smoke cessation. We measured cardiac mitochondrial respiration by high-resolution respirometry, cardiac mitochondrial density, abundance of mitochondrial supercomplexes by electrophoresis, and capillarization, fibrosis, and macrophage infiltration by immunohistology, and performed cardiac metabolome and lipidome analysis by mass spectrometry. RESULTS: Mitochondrial protein, supercomplex content, and respiration (all p < 0.03) were lower after smoking, which were largely reversed within 2-week smoking cessation. Metabolome and lipidome analyses revealed alterations in mitochondrial metabolism, a shift from fatty acid to glucose metabolism, which did not revert to control upon smoking cessation. Capillary density was not different after smoking but increased after smoking cessation (p = 0.02). Macrophage infiltration and fibrosis (p < 0.04) were higher after smoking but did not revert to control upon smoking cessation. CONCLUSIONS: While cigarette-impaired smoking-induced cardiac mitochondrial function was reversed by smoking cessation, the remaining fibrosis and macrophage infiltration may contribute to the increased risk of cardiovascular events after smoking cessation.

2.
Biosystems ; 233: 105032, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37739307

RESUMO

Knowing how the oxidative phosphorylation (OXPHOS) system in cancer cells operates differently from that of normal cells would help find compounds that specifically paralyze the energy metabolism of cancer cells. The first experiments in the study of mitochondrial respiration using the metabolic control analysis (MCA) method were done with isolated liver mitochondria in the early 80s of the last century. Subsequent studies have shown that the regulation of mitochondrial respiration by ADP in isolated mitochondria differs significantly from a model of mitochondria in situ, where the contacts with components in the cytoplasm are largely preserved. The method of selective permeabilization of the outer membrane of the cells allows the application of MCA to evaluate the contribution of different components of the OXPHOS system to its functioning while mitochondria are in a natural state. In this review, we summarize the use of MCA to study OXPHOS in cancer using permeabilized cells and tissues. In addition, we give examples of how this data fits into cancer research with a completely different approach and methodology.

3.
Front Oncol ; 13: 1171887, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342183

RESUMO

In colorectal cancer (CRC) energy metabolism research, the precancerous stage of polyp has remained rather unexplored. By now, it has been shown that CRC has not fully obtained the glycolytic phenotype proposed by O. Warburg and rather depends on mitochondrial respiration. However, the pattern of metabolic adaptations during tumorigenesis is still unknown. Understanding the interplay between genetic and metabolic changes that initiate tumor development could provide biomarkers for diagnosing cancer early and targets for new cancer therapeutics. We used human CRC and polyp tissue material and performed high-resolution respirometry and qRT-PCR to detect changes on molecular and functional level with the goal of generally describing metabolic reprogramming during CRC development. Colon polyps were found to have a more glycolytic bioenergetic phenotype than tumors and normal tissues. This was supported by a greater GLUT1, HK, LDHA, and MCT expression. Despite the increased glycolytic activity, cells in polyps were still able to maintain a highly functional OXPHOS system. The mechanisms of OXPHOS regulation and the preferred substrates are currently unclear and would require further investigation. During polyp formation, intracellular energy transfer pathways become rearranged mainly by increasing the expression of mitochondrial adenylate kinase (AK) and creatine kinase (CK) isoforms. Decreased glycolysis and maintenance of OXPHOS activity, together with the downregulation of the CK system and the most common AK isoforms (AK1 and AK2), seem to play a relevant role in CRC development.

4.
Front Oncol ; 12: 892195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712500

RESUMO

Changes in dynamics of ATP γ- and ß-phosphoryl turnover and metabolic flux through phosphotransfer pathways in cancer cells are still unknown. Using 18O phosphometabolite tagging technology, we have discovered phosphotransfer dynamics in three breast cancer cell lines: MCF7 (non-aggressive), MDA-MB-231 (aggressive), and MCF10A (control). Contrary to high intracellular ATP levels, the 18O labeling method revealed a decreased γ- and ß-ATP turnover in both breast cancer cells, compared to control. Lower ß-ATP[18O] turnover indicates decreased adenylate kinase (AK) flux. Aggressive cancer cells had also reduced fluxes through hexokinase (HK) G-6-P[18O], creatine kinase (CK) [CrP[18O], and mitochondrial G-3-P[18O] substrate shuttle. Decreased CK metabolic flux was linked to the downregulation of mitochondrial MTCK1A in breast cancer cells. Despite the decreased overall phosphoryl flux, overexpression of HK2, AK2, and AK6 isoforms within cell compartments could promote aggressive breast cancer growth.

5.
Biochem Biophys Rep ; 30: 101250, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35295995

RESUMO

The protein wolframin is localized in the membrane of the endoplasmic reticulum (ER), influencing Ca2+ metabolism and ER interaction with mitochondria, but the exact role of the protein remains unclear. Mutations in Wfs1 gene cause autosomal recessive disorder Wolfram syndrome (WS). The first symptom of the WS is diabetes mellitus, so accurate diagnosis of the disease as WS is often delayed. In this study we aimed to characterize the role of the Wfs1 deficiency on bioenergetics of muscles. Alterations in the bioenergetic profiles of Wfs1-exon-5-knock-out (Wfs1KO) male rats in comparison with their wild-type male littermates were investigated using high-resolution respirometry, and enzyme activity measurements. The changes were followed in oxidative (cardiac and soleus) and glycolytic (rectus femoris and gastrocnemius) muscles. There were substrate-dependent alterations in the oxygen consumption rate in Wfs1KO rat muscles. In soleus muscle, decrease in respiration rate was significant in all the followed pathways. The relatively small alterations in muscle during development of WS, such as increased mitochondrial content and/or increase in the OxPhos-related enzymatic activity could be an adaptive response to changes in the metabolic environment. The significant decrease in the OxPhos capacity is substrate dependent indicating metabolic inflexibility when multiple substrates are available.

6.
Analyst ; 146(22): 7034, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34668495

RESUMO

Correction for 'A line-broadening free real-time 31P pure shift NMR method for phosphometabolomic analysis' by Karl Kristjan Kaup et al., Analyst, 2021, 146, 5502-5507, DOI: 10.1039/D1AN01198G.

7.
Analyst ; 146(18): 5502-5507, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515713

RESUMO

Phosphometabolomics by 31P NMR can be challenging, since overlapping multiplets of homonuclear coupled phosphorus nuclei complicate spectral analysis. Pure shift NMR allows to simplify such spectra by collapsing multiplets into singlets, but most pure shift methods require substantially elongated measurement times or cause disturbing spectral line broadening. Herein, we combine established pure shift NMR and artefact suppression techniques to record 31P pure shift NMR spectra without penalties in measurement time or line width. Examples are demonstrated in resolution of a mixture of nucleotide triphosphates and a biological sample of 18O labelled ATP isotopomers.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
8.
Front Oncol ; 11: 698951, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381722

RESUMO

Metabolic plasticity is the ability of the cell to adjust its metabolism to changes in environmental conditions. Increased metabolic plasticity is a defining characteristic of cancer cells, which gives them the advantage of survival and a higher proliferative capacity. Here we review some functional features of metabolic plasticity of colorectal cancer cells (CRC). Metabolic plasticity is characterized by changes in adenine nucleotide transport across the outer mitochondrial membrane. Voltage-dependent anion channel (VDAC) is the main protein involved in the transport of adenine nucleotides, and its regulation is impaired in CRC cells. Apparent affinity for ADP is a functional parameter that characterizes VDAC permeability and provides an integrated assessment of cell metabolic state. VDAC permeability can be adjusted via its interactions with other proteins, such as hexokinase and tubulin. Also, the redox conditions inside a cancer cell may alter VDAC function, resulting in enhanced metabolic plasticity. In addition, a cancer cell shows reprogrammed energy transfer circuits such as adenylate kinase (AK) and creatine kinase (CK) pathway. Knowledge of the mechanism of metabolic plasticity will improve our understanding of colorectal carcinogenesis.

9.
Cancers (Basel) ; 12(4)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231083

RESUMO

This study aimed to characterize the ATP-synthesis by oxidative phosphorylation in colorectal cancer (CRC) and premalignant colon polyps in relation to molecular biomarkers KRAS and BRAF. This prospective study included 48 patients. Resected colorectal polyps and postoperative CRC tissue with adjacent normal tissue (control) were collected. Patients with polyps and CRC were divided into three molecular groups: KRAS mutated, BRAF mutated and KRAS/BRAF wild-type. Mitochondrial respiration in permeabilized tissue samples was observed using high resolution respirometry. ADP-activated respiration rate (Vmax) and an apparent affinity of mitochondria to ADP, which is related to mitochondrial outer membrane (MOM) permeability, were determined. Clear differences were present between molecular groups. KRAS mutated CRC group had lower Vmax values compared to wild-type; however, the Vmax value was higher than in the control group, while MOM permeability did not change. This suggests that KRAS mutation status might be involved in acquiring oxidative phenotype. KRAS mutated polyps had higher Vmax values and elevated MOM permeability as compared to the control. BRAF mutated CRC and polyps had reduced respiration and altered MOM permeability, indicating a glycolytic phenotype. To conclude, prognostic biomarkers KRAS and BRAF are likely related to the metabolic phenotype in CRC and polyps. Assessment of the tumor mitochondrial ATP synthesis could be a potential component of patient risk stratification.

10.
Biochim Biophys Acta Gen Subj ; 1864(4): 129523, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31935437

RESUMO

BACKGROUND: Wolfram syndrome (WS), caused by mutations in WFS1 gene, is a multi-targeting disease affecting multiple organ systems. Wolframin is localized in the membrane of the endoplasmic reticulum (ER), influencing Ca2+ metabolism and ER interaction with mitochondria, but the exact role of the protein remains unclear. In this study we aimed to characterize alterations in energy metabolism in the cardiac and in the oxidative and glycolytic skeletal muscles in Wfs1-deficiency. METHODS: Alterations in the bioenergetic profiles in the cardiac and skeletal muscles of Wfs1-knock-out (KO) male mice and their wild type male littermates were determined using high resolution respirometry, quantitative RT-PCR, NMR spectroscopy, and immunofluorescence confocal microscopy. RESULTS: Oxygen consumption without ATP synthase activation (leak) was significantly higher in the glycolytic muscles of Wfs1 KO mice compared to wild types. ADP-stimulated respiration with glutamate and malate was reduced in the Wfs1-deficient cardiac as well as oxidative and glycolytic skeletal muscles. CONCLUSIONS: Wfs1-deficiency in both cardiac and skeletal muscles results in functional alterations of energy transport from mitochondria to ATP-ases. There was a substrate-dependent decrease in the maximal Complex I -linked respiratory capacity of the electron transport system in muscles of Wfs1 KO mice. Moreover, in cardiac and gastrocnemius white muscles a decrease in the function of one pathway were balanced by the increase in the activity of the parallel pathway. GENERAL SIGNIFICANCE: This work provides new insights to the muscle involvement at early stages of metabolic syndrome like WS as well as developing glucose intolerance.


Assuntos
Metabolismo Energético , Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Síndrome de Wolfram/metabolismo , Animais , Modelos Animais de Doenças , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/patologia , Síndrome de Wolfram/patologia
11.
Acta Physiol (Oxf) ; 228(3): e13430, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31840389

RESUMO

Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Resistência à Insulina , Animais , Diabetes Mellitus Tipo 2/patologia , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Ácidos Graxos/metabolismo , Humanos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia
12.
Cells ; 8(3)2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871176

RESUMO

In recent decades, there have been several models describing the relationships between the cytoskeleton and the bioenergetic function of the cell. The main player in these models is the voltage-dependent anion channel (VDAC), located in the mitochondrial outer membrane. Most metabolites including respiratory substrates, ADP, and Pi enter mitochondria only through VDAC. At the same time, high-energy phosphates are channeled out and directed to cellular energy transfer networks. Regulation of these energy fluxes is controlled by ß-tubulin, bound to VDAC. It is also thought that ß-tubulin‒VDAC interaction modulates cellular energy metabolism in cancer, e.g., switching from oxidative phosphorylation to glycolysis. In this review we focus on the described roles of unpolymerized αß-tubulin heterodimers in regulating VDAC permeability for adenine nucleotides and cellular bioenergetics. We introduce the Mitochondrial Interactosome model and the function of the ßII-tubulin subunit in this model in muscle cells and brain synaptosomes, and also consider the role of ßIII-tubulin in cancer cells.


Assuntos
Permeabilidade da Membrana Celular , Doença , Saúde , Tubulina (Proteína)/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Humanos , Isoformas de Proteínas/metabolismo
13.
Am J Physiol Cell Physiol ; 316(5): C657-C667, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30811221

RESUMO

Mitochondria perform a central role in life and death of the eukaryotic cell. They are major players in the generation of macroergic compounds and function as integrated signaling pathways, including the regulation of Ca2+ signals and apoptosis. A growing amount of evidence is demonstrating that mitochondria of muscle cells use cytoskeletal proteins (both microtubules and intermediate filaments) not only for their movement and proper cellular positioning, but also to maintain their biogenesis, morphology, function, and regulation of energy fluxes through the outer mitochondrial membrane (MOM). Here we consider the known literature data concerning the role of tubulin, plectin, desmin and vimentin in bioenergetic function of mitochondria in striated muscle cells, as well as in controlling the permeability of MOM for adenine nucleotides (ADNs). This is of great interest since dysfunctionality of these cytoskeletal proteins has been shown to result in severe myopathy associated with pronounced mitochondrial dysfunction. Further efforts are needed to uncover the pathways by which the cytoskeleton supports the functional capacity of mitochondria and transport of ADN(s) across the MOM (through voltage-dependent anion channel).


Assuntos
Desmina/fisiologia , Membranas Mitocondriais/fisiologia , Células Musculares/fisiologia , Plectina/fisiologia , Tubulina (Proteína)/fisiologia , Vimentina/fisiologia , Animais , Humanos , Mitocôndrias/fisiologia
14.
Int J Mol Sci ; 19(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261663

RESUMO

Compartmentalization of high-energy phosphate carriers between intracellular micro-compartments is a phenomenon that ensures efficient energy use. To connect these sites, creatine kinase (CK) and adenylate kinase (AK) energy-transfer networks, which are functionally coupled to oxidative phosphorylation (OXPHOS), could serve as important regulators of cellular energy fluxes. Here, we introduce how selective permeabilization of cellular outer membrane and high-resolution respirometry can be used to study functional coupling between CK or AK pathways and OXPHOS in different cells and tissues. Using the protocols presented here the ability of creatine or adenosine monophosphate to stimulate OXPHOS through CK and AK reactions, respectively, is easily observable and quantifiable. Additionally, functional coupling between hexokinase and mitochondria can be investigated by monitoring the effect of glucose on respiration. Taken together, high-resolution respirometry in combination with permeabilization is a convenient approach for investigating energy-transfer networks in small quantities of cells and tissues in health and in pathology.


Assuntos
Respiração Celular , Citoplasma/metabolismo , Transferência de Energia , Mitocôndrias/metabolismo , Adenilato Quinase/metabolismo , Animais , Creatina Quinase/metabolismo , Humanos , Espaço Intracelular/metabolismo , Fosforilação Oxidativa
15.
Biochem Cell Biol ; : 1-10, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30058357

RESUMO

The aim of this work was to explore the key bioenergetic properties for mitochondrial respiration in the widely-used Caco-2 cell line and in human colorectal cancer (HCC) postoperational tissue samples. Oxygraphy and metabolic control analysis (MCA) were applied to estimate the function of oxidative phosphorylation in cultured Caco-2 cells and HCC tissue samples. The mitochondria of Caco-2 cells and HCC tissues displayed larger functional activity of respiratory complex (C)II compared with CI, whereas in normal colon tissue an inverse pattern in the ratio of CI to CII activity was observed. MCA showed that the respiration in Caco-2 and HCC tissue cells is regulated by different parts of electron transport chain. In HCC tissues, this control is performed essentially at the level of respiratory chain complexes I-IV, whereas in Caco-2 cells at the level of CIV (cytochrome c oxidase) and the ATP synthasome. The differences we found in the regulation of respiratory chain activity and glycose index could represent an adaptive response to distinct growth conditions; this highlights the importance of proper validation of results obtained from in-vitro models before their extrapolation to the more complex in-vivo systems.

16.
J Bioenerg Biomembr ; 50(5): 339-354, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29998379

RESUMO

Previous studies have shown that class II ß-tubulin plays a key role in the regulation of oxidative phosphorylation (OXPHOS) in some highly differentiated cells, but its role in malignant cells has remained unclear. To clarify these aspects, we compared the bioenergetic properties of HL-1 murine sarcoma cells, murine neuroblastoma cells (uN2a) and retinoic acid - differentiated N2a cells (dN2a). We examined the expression and possible co-localization of mitochondrial voltage dependent anion channel (VDAC) with hexokinase-2 (HK-2) and ßII-tubulin, the role of depolymerized ßII-tubuline and the effect of both proteins in the regulation of mitochondrial outer membrane (MOM) permeability. Our data demonstrate that neuroblastoma and sarcoma cells are prone to aerobic glycolysis, which is partially mediated by the presence of VDAC bound HK-2. Microtubule destabilizing (colchicine) and stabilizing (taxol) agents do not affect the MOM permeability for ADP in N2a and HL-1 cells. The obtained results show that ßII-tubulin does not regulate the MOM permeability for adenine nucleotides in these cells. HL-1 and NB cells display comparable rates of ADP-activated respiration. It was also found that differentiation enhances the involvement of OXPHOS in N2a cells due to the rise in their mitochondrial reserve capacity. Our data support the view that the alteration of mitochondrial affinity for ADNs is one of the characteristic features of cancer cells. It can be concluded that the binding sites for tubulin and hexokinase within the large intermembrane protein supercomplex Mitochondrial Interactosome, could be different between muscle and cancer cells.


Assuntos
Glicólise/fisiologia , Proteínas/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Animais , Humanos , Camundongos , Membranas Mitocondriais/metabolismo , Permeabilidade
17.
Oxid Med Cell Longev ; 2017: 1372640, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28781720

RESUMO

We conducted quantitative cellular respiration analysis on samples taken from human breast cancer (HBC) and human colorectal cancer (HCC) patients. Respiratory capacity is not lost as a result of tumor formation and even though, functionally, complex I in HCC was found to be suppressed, it was not evident on the protein level. Additionally, metabolic control analysis was used to quantify the role of components of mitochondrial interactosome. The main rate-controlling steps in HBC are complex IV and adenine nucleotide transporter, but in HCC, complexes I and III. Our kinetic measurements confirmed previous studies that respiratory chain complexes I and III in HBC and HCC can be assembled into supercomplexes with a possible partial addition from the complex IV pool. Therefore, the kinetic method can be a useful addition in studying supercomplexes in cell lines or human samples. In addition, when results from culture cells were compared to those from clinical samples, clear differences were present, but we also detected two different types of mitochondria within clinical HBC samples, possibly linked to two-compartment metabolism. Taken together, our data show that mitochondrial respiration and regulation of mitochondrial membrane permeability have substantial differences between these two cancer types when compared to each other to their adjacent healthy tissue or to respective cell cultures.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias Colorretais/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular , Respiração Celular/fisiologia , Citrato (si)-Sintase/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Cinética , Células MCF-7 , Membranas Mitocondriais/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologia
18.
Mol Cell Biochem ; 432(1-2): 141-158, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28293876

RESUMO

The role of mitochondria in alterations that take place in the muscle cell during healthy aging is a matter of debate during recent years. Most of the studies in bioenergetics have a focus on the model of isolated mitochondria, while changes in the crosstalk between working myofibrils and mitochondria in senescent cardiomyocytes have been less studied. The aim of our research was to investigate the modifications in the highly regulated ATP production and energy transfer systems in heart cells in old rat cardiomyocytes. The results of our work demonstrated alterations in the diffusion restrictions of energy metabolites, manifested by changes in the apparent Michaelis-Menten constant of mitochondria to exogenous ADP. The creatine kinase (CK) phosphotransfer pathway efficiency declines significantly in senescence. The ability of creatine to stimulate OXPHOS as well as to increase the affinity of mitochondria for ADP is falling and the most critical decline is already in the 1-year group (middle-age model in rats). Also, a moderate decrease in the adenylate kinase phosphotransfer system was detected. The importance of glycolysis increases in senescence, while the hexokinase activity does not change during healthy aging. The main result of our study is that the decline in the heart muscle performance is not caused by the changes in the respiratory chain complexes activity but mainly by the decrease in the energy transfer efficiency, especially by the CK pathway.


Assuntos
Envelhecimento/metabolismo , Glicólise/fisiologia , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , Animais , Senescência Celular/fisiologia , Ratos , Ratos Wistar
19.
Ageing Res Rev ; 28: 1-14, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27063513

RESUMO

Age-related alterations in the bioenergetics of the heart and oxidative skeletal muscle tissues are of crucial influence on their performance. Until now the prevailing concept of aging was the mitochondrial theory, the increased production of reactive oxygen species, mediated by deficiency in the activity of respiratory chain complexes. However, studies with mitochondria in situ have presented results which, to some extent, disagree with previous ones, indicating that the mitochondrial theory of aging may be overestimated. The studies reporting age-related decline in mitochondrial function were performed using mainly isolated mitochondria. Measurements on this level are not able to take into account the system level properties. The relevant information can be obtained only from appropriate studies using cells or tissue fibers. The functional interactions between the components of Intracellular Energetic Unit (ICEU) regulate the energy production and consumption in oxidative muscle cells. The alterations of these interactions in ICEU should be studied in order to find a more effective protocol to decelerate the age-related changes taking place in the energy metabolism. In this article, an overview is given of the present theories and controversies of causes of age-related alterations in bioenergetics. Also, branches of study, which need more emphasis, are indicated.


Assuntos
Envelhecimento/fisiologia , Metabolismo Energético/fisiologia , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Humanos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
PLoS One ; 10(12): e0144042, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26629816

RESUMO

The role of dietary fiber in supporting healthy gut microbiota and overall well-being of the host has been revealed in several studies. Here, we show the effect of a bacterial polyfructan levan on the growth dynamics and metabolism of fecal microbiota in vitro by using isothermal microcalorimetry. Eleven fecal samples from healthy donors were incubated in phosphate-buffered defined medium with or without levan supplementation and varying presence of amino acids. The generation of heat, changes in pH and microbiota composition, concentrations of produced and consumed metabolites during the growth were determined. The composition of fecal microbiota and profile of metabolites changed in response to substrate (levan and amino acids) availability. The main products of levan metabolism were acetic, lactic, butyric, propionic and succinic acids and carbon dioxide. Associated growth of levan-degrading (e.g. Bacteroides) and butyric acid-producing (e.g. Faecalibacterium) taxa was observed in levan-supplemented media. The study shows that the capacity of levan and possibly also other dietary fibers/prebiotics to modulate the composition and function of colon microbiota can be predicted by using isothermal microcalorimetry of fecal samples linked to metabolite and consortia analyses.


Assuntos
Bacteroides/efeitos dos fármacos , Escherichia/efeitos dos fármacos , Fezes/microbiologia , Frutanos/farmacologia , Streptococcus/efeitos dos fármacos , Bacteroides/crescimento & desenvolvimento , Escherichia/genética , Streptococcus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...